850 NM, 300 M REACH, MPO #### QSFP-40G-XSR4-A 40GBASE, QSFP+, CSR4 Transceiver #### **Features** - 4 channels full-duplex transceiver modules - Transmission data rate up to 10.5Gbps per channel - 4 channels 850nm VCSEL array - 4 channels PIN photo detector array - Low power consumption <1.5W - Hot Pluggable QSFP form factor - Maximum link length of 300m on OM3 Multimode Fiber (MMF)and 400m on OM4 MMF - Single MPO connector receptacle - Built-in digital diagnostic functions - Operating case temperature 0°C to +70°C - 3.3V power supply voltage - RoHS 6 compliant # Applications - 40GBASE-SR4 40G Ethernet - Datacom/Telecom switch & router connections - Data Aggregation and Backplane Applications - Proprietary Protocol and Density Applications - Infiniband transmission at 4ch SDR, DDR and QDR ## 1. Description The Approved Networks QSFP-40G-XSR4-A is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP+ Transceiver for 40 Gigabit Ethernet Applications. This transceiver is a high performance module for short-range multi-lane data communication and interconnect applications. It integrates four data lanes in each direction with 40 Gbps bandwidth. Each lane can operate at 10.3125 Gbps up to 300 m using OM3 fiber or 400 m using OM4 fiber. These modules are designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 38 contact edge type connector. The optical interface uses an 12 fiber MTP (MPO) connector. This module incorporates Approved Networks proven circuit and VCSEL technology to provide reliable long life, high performance, and consistent service. ## 2. Module Block Diagram ## 3. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | |----------------------------|--------|------|---------|------| | Supply Voltage | Vcc | -0.3 | 3.6 | V | | Input Voltage | Vin | -0.3 | Vcc+0.3 | V | | Storage Temperature | Tst | -20 | 85 | °C | | Case Operating Temperature | Тор | 0 | 70 | °C | | Humidity (non-condensing) | Rh | 5 | 95 | % | ## 4. Recommended Operating Conditions | Parameter | Symbol | Min | Typical | Max | Unit | |----------------------------|--------|------|---------|----------|------| | Supply Voltage | Vcc | 3.13 | 3.3 | 3.47 | V | | Operating Case temperature | Tca | 0 | | 70 | ۰C | | Data Rate Per Lane | fd | | 10.3 | 10.5 (1) | Gbps | | Humidity | Rh | 5 | | 85 | % | | Power Dissipation | Pm | | | 1.5 | W | | Fiber Bend Radius | Rb | 3 | | | cm | #### Note: 1. Up to 12.5 Gb/s may be supported. # **5. Electrical Specifications** | Parameter | Symbol | Min | Typical | Max | Unit | |---------------------------------------|--------|---------|---------|------|-------| | Differential input impedance | Zin | 90 | 100 | 110 | ohm | | Differential Output impedance | Zout | 90 | 100 | 110 | ohm | | Differential input voltage amplitude | ΔVin | 300 | | 1100 | mVp-p | | Differential output voltage amplitude | ΔVout | 500 | | 800 | mVp-p | | Skew | Sw | | | 300 | ps | | Bit Error Rate | BER | | | E-12 | | | Input Logic Level High | VIH | 2.0 | | VCC | V | | Input Logic Level Low | VIL | 0 | | 0.8 | V | | Output Logic Level High | VOH | VCC-0.5 | | VCC | V | | Output Logic Level Low | VOL | 0 | | 0.4 | V | ### **Notes:** - 1. BER=10^-12; PRBS 2^31-1@10.3125Gbps. - 2. Differential input voltage amplitude is measured between TxnP and TxnN. - 3. Differential output voltage amplitude is measured between RxnN and RxnN. ## 6. Optical Characteristics | Transmitter | | | | | | | |--|-----------------------------|------|---------|------|-----------------------|-------| | Parameter | Symbol | Min | Typical | Max | Unit | Notes | | Centre Wavelength | λς | 840 | 850 | 860 | nm | - | | RMS spectral width | Δλ | - | - | 0.65 | nm | - | | Average launch power, each lane | Pout | -7.5 | - | 2.5 | dBm | - | | Difference in launch power between any two lanes (OMA) | | | | 4 | dB | - | | Extinction Ratio | ER | 3 | - | - | dB | - | | Peak power, each lane | | | | 4 | dBm | - | | ransmitter and dispersion | | | | | | | | penalty (TDP), each lane | TDP | | | 3.5 | dB | - | | Average launch power of OFF transmitter, each lane | | | | -30 | dB | - | | Eye Mask coordinates:
X1, X2, X3, Y1, Y2, Y3 | 31 2011 107 111011 17 12023 | | | | Hit Ratio
= 5x10-5 | | | Receiver | | | | | | | |--|--------|-----|---------|------|------|-------| | Parameter | Symbol | Min | Typical | Max | Unit | Notes | | Centre Wavelength | λς | 840 | 850 | 860 | nm | 1 | | Stressed receiver sensitivity in OMA | | | | -5.4 | dBm | 1 | | Maximum Average power at receiver, each lane | | | | 2.4 | dBm | - | | Minimum Average power at receiver, each lane | | | | -9.9 | dBm | | | Receiver Reflectance | | | | -12 | dB | - | | Peak power, each lane | | | | 4 | dBm | - | | LOS Assert | | -30 | | | dBm | ı | | LOS De-Assert – OMA | | | | -7.5 | dBm | - | | LOS Hysteresis | | 0.5 | | | dB | - | #### Note: 1. Measured with conformance test signal at TP3 for BER = 10e-12 ## 7. Pin Descriptions | Pin | Logic | Symbol | Name/Description | Notes | |-----|------------|--------|-------------------------------------|-------| | 1 | | GND | Module Ground | 1 | | 2 | CML-I | Tx2- | Transmitter inverted data input | | | 3 | CML-I | Tx2+ | Transmitter non-inverted data input | | | 4 | | GND | Module Ground | 1 | | 5 | CML-I | Tx4- | Transmitter inverted data input | | | 6 | CML-I | Tx4+ | Transmitter non-inverted data input | | | 7 | | GND | Module Ground | 1 | | 8 | LVTTL-I | MODSEL | Module Select | 2 | | 9 | LVTTL-I | ResetL | Module Reset | 2 | | 10 | | VCCRx | +3.3v Receiver Power Supply | | | 11 | LVCMOS-I | SCL | 2-wire Serial interface clock | 2 | | 12 | LVCMOS-I/O | SDA | 2-wire Serial interface data | 2 | | 13 | | GND | Module Ground | 1 | | 14 | CML-O | RX3+ | Receiver non-inverted data output | | | 15 | CML-O | RX3- | Receiver inverted data output | | | 16 | | GND | Module Ground | 1 | | 17 | CML-O | RX1+ | Receiver non-inverted data output | | | 18 | CML-O | RX1- | Receiver inverted data output | | | 19 | | GND | Module Ground | 1 | | Pin | Logic | Symbol | Name/Description | Notes | |-----|---------|---------|---|-------| | 20 | | GND | Module Ground | 1 | | 21 | CML-O | RX2- | Receiver inverted data output | | | 22 | CML-O | RX2+ | Receiver non-inverted data output | | | 23 | | GND | Module Ground | 1 | | 24 | CML-O | RX4- | Receiver inverted data output | | | 25 | CML-O | RX4+ | Receiver non-inverted data output | | | 26 | | GND | Module Ground | 1 | | 27 | LVTTL-O | ModPrsL | Module Present, internal pulled down to GND | | | 28 | LVTTL-O | IntL | Interrupt output, should be pulled up on host board | 2 | | 29 | | VCCTx | +3.3v Transmitter Power Supply | | | 30 | | VCC1 | +3.3v Power Supply | | | 31 | LVTTL-I | LPMode | Low Power Mode | 2 | | 32 | | GND | Module Ground | 1 | | 33 | CML-I | Tx3+ | Transmitter non-inverted data input | | | 34 | CML-I | Tx3- | Transmitter inverted data input | | | 35 | | GND | Module Ground | 1 | | 36 | CML-I | Tx1+ | Transmitter non-inverted data input | | | 37 | CML-I | Tx1- | Transmitter inverted data input | | | 38 | | GND | Module Ground | 1 | #### **Notes:** - 1. Module circuit ground is isolated from module chassis ground within the module. - 2. Open collector; should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15V and 3.6V. Figure 1. Electrical Pin-out Details #### **ModSelL Pin** The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus. When the ModSelL is "High", the module will not respond to any 2-wire interface communication from the host. ModSelL has an internal pull-up in the module. #### **ResetL Pin** Reset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset. #### **LPMode Pin** Approved Networks QSFP+ SR4 operate in the low power mode (less than 1.5 W power consumption) This pin active high will decrease power consumption to less than 1W. #### ModPrsL Pin ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector. #### **IntL Pin** IntL is an output pin. When "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to Vcc on the host board. #### 8. Power Supply Filtering Figure 2. Host Board Power Supply Filtering ## 9. Optical Interface Lanes and Assignment The optical interface port is a male MPO connector .The four fiber positions on the left as shown in Figure 3, with the key up, are used for the optical transmit signals (Channels 1 through 4). The fiber positions on the right are used for the optical receive signals (Channels 4 through 1). The central four fibers are physically present. Figure 3. Optical Receptacle and Channel Orientation #### 10. Diagnostic Monitoring Interface Digital diagnostics monitoring function is available on all Approved Networks QSFP+ SR4. A 2-wire serial interface provides user to contact with module. The structure of the memory is shown in Figure 5. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag. Figure 4. QSFP Memory Map | Byte Address | Description | Туре | |--------------|------------------------------|------------| | 128-175 | Module Thresholds (48 Bytes) | Read Only | | 176-223 | Reserved (48 Bytes) | Read Only | | 224-225 | Reserved (2 Bytes) | Read Only | | 226-239 | Reserved (14 Bytes) | Read/Write | | 240-241 | Channel Controls (2 Bytes) | Read/Write | | 242-253 | Reserved (12 Bytes) | Read/Write | | 254-255 | Reserved (2 Bytes) | Read/Write | Figure 5. Page 03 Memory Map | Address | Name | Description | |---------|---|--| | 128 | Identifier (1 Byte) | Identifier Type of serial transceiver | | 129 | Ext. Identifier (1 Byte) | Extended identifier of serial transceiver | | 130 | Connector (1 Byte) | Code for connector type | | 131-138 | Transceiver (8 Bytes) | Code for electronic compatibility or optical compatibility | | 139 | Encoding (1 Byte) | Code for serial encoding algorithm | | 140 | BR, nominal (1 Byte) | Nominal bit rate, units of 100 Mbits/s | | 141 | Extended RateSelect Compliance (1 Byte) | Tags for Extended RateSelect compliance | | 142 | Length SMF (1 Byte) | Link length supported for SM fiber in km | | 143 | Length E-50 μm (1 Byte) | Link length supported for EBW 50/125 μm fiber, units of 2 m | | 144 | Length 50 μm (1 Byte) | Link length supported for 50/125 μm fiber, units of 1 m | | 145 | Length 62.5 μm (1 Byte) | Link length supported for 62.5/125μm fiber, units of 1 m | | 146 | Length copper (1 Byte) | Link length supported for copper, units of 1 m | | 147 | Device Tech (1 Byte) | Device technology | | 148-163 | Vendor name (16 Bytes) | QSFP vendor name (ASCII) | | 164 | Extended Transceiver (1 Byte) | Extended Transceiver Codes for InfiniBand [†] | | 165-167 | Vendor OUI (3 Bytes) | QSFP vendor IEEE vendor company ID | | 168-183 | Vendor PN (16 Bytes) | Part number provided by QSFP vendor (ASCII) | | 184-185 | Vendor rev (2 Bytes) | Revision level for part number provided by vendor (ASCII) | | 186-187 | Wavelength (2 Bytes) | Nominal laser wavelength (Wavelength = value / 20 in nm) | | 188-189 | Wavelength Tolerance (2 Bytes) | Guaranteed range of laser wavelength (+/- value) from Nominal wavelength (Wavelength Tol. = value / 200 in nm) | | 190 | Max Case Temp (1 Byte) | Maximum Case Temperature in Degrees C | | 191 | CC_BASE (1 Byte) | Check code for Base ID fields (addresses 128-190) | | 192-195 | Options (4 Bytes) | Rate Select, TX Disable, TX Fault, LOS | | 196-211 | Vendor SN (16 Bytes) | Serial number provided by vendor (ASCII) | | 212-219 | Date code (8 Bytes) | Vendor's manufacturing date code | | 220 | Diagnostic Monitoring Type (1 Byte) | Indicates which type of diagnostic monitoring is implemented | | 221 | Enhanced Options (1 Byte) | Indicates which optional enhanced features are implemented | | 222 | Reserved (1 Byte) | Reserved | | 223 | CC_EXT | Check code for the Extended ID Fields (addresses 192-222) | | 224-255 | Vendor Specific (32 Bytes) | Vendor Specific EEPROM | Figure 6. Page 00 Memory Map | Byte Address | Description | Туре | |--------------|------------------------------------|------------| | 0 | Identifier (1 Byte) | Read Only | | 1-2 | Status (2 Bytes) | Read Only | | 3-21 | Interrupt Flags (31 Bytes) | Read Only | | 22-33 | Module Monitors (12 Bytes) | Read Only | | 34-81 | Channel Monitors (48 Bytes) | Read Only | | 82-85 | Reserved (4 Bytes) | Read Only | | 86-97 | Control (12 Bytes) | Read/Write | | 98-99 | Reserved (2 Bytes) | Read/Write | | 100-106 | Module and Channel Masks (7 Bytes) | Read/Write | | 107-118 | Reserved (12 Bytes) | Read/Write | | 119-122 | Reserved (4 Bytes) | Read/Write | | 123-126 | Reserved (4 Bytes) | Read/Write | | 127 | Page Select Byte | Read/Write | Figure 7. Low Memory Map # 11. Timing for Soft Control and Status Functions | Parameter | Symbol | Max | Unit | Conditions | |-----------------------------------|--------------|------|------|---| | Initialization Time | t_init | 2000 | ms | Time from power on ¹ , hot plug or rising edge of Reset until the module is fully functional ² | | Reset Init Assert
Time | t_reset_init | 2 | μs | A Reset is generated by a low level longer than the minimum reset pulse time present on the ResetL pin. | | Serial Bus Hardware
Ready Time | t_serial | 2000 | ms | Time from power on1 until module responds to data transmission over the 2-wire serial bus | | Monitor Data Ready
Time | t_data | 2000 | ms | Time from power on 1 to data not ready, bit 0 of Byte 2, deasserted and IntL asserted | | Reset Assert Time | t_reset | 2000 | ms | Time from rising edge on the ResetL pin until the module is fully functional ² | | LPMode Assert Time | ton_LPMode | 100 | μs | Time from assertion of LPMode (Vin:LPMode = Vih) until module power consumption enters lower Power Level | | IntL Assert Time | ton_IntL | 200 | ms | Time from occurrence of condition triggering IntL until Vout:IntL = Vol | | IntL Deassert Time | toff_IntL | 500 | μs | Time from clear on read ³ operation of associated flag until Vout:IntL = Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits. | | Parameter | Symbol | Max | Unit | Conditions | |--|--------------|-----|------|--| | Rx LOS Assert Time | ton_los | 100 | ms | Time from Rx LOS state to Rx LOS bit set and IntL asserted | | Tx Fault Assert Time | ton_Txfault | 200 | ms | Time from Tx Fault state to Tx Fault bit set and IntL asserted | | Flag Assert Time | ton_flag | 200 | ms | Time from occurrence of condition triggering flag to associated flag bit set and IntL asserted | | Mask Assert Time | ton_mask | 100 | ms | Time from mask bit set ⁴ until associated IntL assertion is inhibited | | Mask Deassert Time | toff_mask | 100 | ms | Time from mask bit cleared4 until associated IntlL operation resumes | | ModSelL Assert Time | ton_ModSelL | 100 | μs | Time from assertion of ModSelL until module responds to data transmission over the 2-wire serial bus | | ModSelL Deassert
Time | toff_ModSelL | 100 | μs | Time from deassertion of ModSelL until the module does not respond to data transmission over the 2-wire serial bus | | Power_over-ride or
Power-set Assert
Time | ton_Pdown | 100 | ms | Time from P_Down bit set 4 until module power consumption enters lower Power Level | | Power_over-ride or
Power-set Deassert | toff_Pdown | 300 | ms | Time from P_Down bit cleared4 until the module is fully functional ³ | #### **Notes:** - 1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value. - 2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 deasserted. - 3. Measured from falling clock edge after stop bit of read transaction. - 4. Measured from falling clock edge after stop bit of write transaction. #### 12. Mechanical Dimensions #### 13. Contact Information Approved Networks is a leading supplier of Network Transceivers and Connectivity products to Channel Partners, Resellers, and OEMs. With more than 9 years of direct industry experience, our products are resident in the most demanding and mission critical functional networks Worldwide. We serve as a Master Distributor to the largest CMs in the world and deploy the most rigorous testing and firmware management programs to bring the highest level of functional product to the market at a cost that makes sense. Corporate Offices: Approved Networks, Inc. Tel: 800.590.9535 Web: http://www.approvednetworks.com